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Abstract

Designing well-shaped reward for rein-
forcement learning agents can be chal-
lenging, often requiring careful hand craft-
ing and experimentation. We propose
a method that interleaves reinforcement
learning with grounded natural language
in a way that is consistent with human
feedback. We learn a joint embedding
space between trajectories and language
feedback that enables the agent to quickly
adapt to human feedback by directly mov-
ing in the embedding space. Moreover,
this embedding space can be used to ex-
plain differences in behavior using lan-
guage.

1 Introduction

Specifying tasks for autonomous agents is often a
challenging problem. In reinforcement learning,
tasks are learned and defined in terms of a reward
function. However, in many cases, specifying a re-
ward function that is in line with desired behavior
can be difficult.

Consider the task of autonomous driving, in
which an autonomous car must from navigate
from location A to destination B. What should be
the reward for this task? Suppose we defined re-
ward as a binary indicator for when the car reaches
the destination. However, the agent may never ex-
perience any reward since it’s extremely unlikely
the agent will reach the destination by chance. If
we include a shaping function that incentivizes the
agent to be closer in Euclidean distance to the
destination, the agent may learn to plow through
pedestrians and drive off roads in the direction of
the destination. Suppose we penalize the agent for
injuring pedestrians and disobeying traffic laws,

Figure 1: Joint embedding space for language and
behavior: we construct a deep embedding space in
which agent behavior, such a navigating to differ-
ent locations, encode as points in the space z1 and
z2. The language feedback describing the change
in behavior is encoded as the vector between be-
havior points.

how should the agent learn to trade off injuring
passengers in the car vs injuring pedestrians?

Even if we could enumerate all possible events
and associate numerical weights to them, identi-
fying when these events occur is an even harder
problem. Avoiding pedestrians requires recogniz-
ing pedestrians in all types of traffic conditions,
and following traffic rules requires encoding every
rule into a format the agent understands. Each of
these problems is a research problem in of itself.

Imitation learning is one approach to the reward
design problem that learns from expert demonstra-
tions. In traditional forms of imitation learning,
the agent either learns a direct mapping of states
to expert actions or infers a reward function in
which the expert is optimal. However imitation
is not the only way humans learn expert behav-
ior. Rather, we can interpret natural language in-
structions such as in the form of a cooking recipe



or a teacher’s directions. These language instruc-
tions can describe dense task-specific rewards as
well as provide online feedback for the learner.
Suppose, in the navigation task, the autonomous
car is given the task ”drive to the grocery store,”
however it learns to make dangerous turns. The
teacher could then provide feedback in the form
of language such as ”slow down before turning”
to guide the agent towards better behavior.

2 Related Work

Much of the related work in interleaving natu-
ral language with reinforcement learning has con-
sisted of instruction following, in which a rein-
forcement learning agent is given a natural lan-
guage instruction and the agent must take ac-
tions that realize the task specified in the instruc-
tion. Branavan et al. (2009) and Misra et al.
(2017) learns policies conditioned on states and
commands which are trained using reinforcement
learning. Artzi and Zettlemoyer (2013) and She
and Chai (2017) learn parsers over a grounded
grammar to parse commands to actions. Mei et al.
(2016) and Arumugam et al. (2017) learn recur-
rent neural network models that combine natural
language instructions with agent observations to
produce actions realizing those instructions. How-
ever, teaching an agent to follow language com-
mands may not generalize well across new tasks,
new environments, or new agents. Suppose the
robot was taught to push orange and brown blocks,
how should the robot generalize to pushing blue
block when it has no grounding of what the blue
block is?

Another direction of work maps learns natural
language to functions in ways that are generaliz-
able across environments or tasks. MacGlashan
et al. (2015) and MacGlashan et al. (2014) takes
a reward learning approach in which learned re-
ward functions are generalized across to new en-
vironments and robots. Suddrey et al. (2017) and
Branavan et al. (2012) learn high level planners
and parses language instructions into low-level
reusable modules. Andreas et al. (2017) breaks
down larger tasks into reusable language-guided
sub-tasks that can generalize to solving new tasks.
Jänner et al. (2017) learns a universal value func-
tion conditioned on language instructions that gen-
eralizes across new instructions. Wang et al.
(2016) learns mappings from language to sub-task
commands in an interactive online game.

In terms of human feedback, many prior works
learn policies from preferences. Christiano et al.
(2017) learns a reward function that aligns with
human feedback in an online reinforcement learn-
ing task. (Akrour et al., 2011, 2012, 2014) learn
robust utility functions over user preferences for
inferring rewards. Daniel et al. (2015) and Mac-
Glashan et al. (2017) combine online reinforce-
ment learning with preference ratings to simulta-
neously learn rewards while learning policies.

Learning deep embedding spaces have also
shown remarkable ability in discovering structure
in unsupervised datasets. Mikolov et al. (2013)
learns distributed representations for words that
capture contextual relationships among words.
Kiros et al. (2015) extend distributed representa-
tions to the sentence level by considering sentence
contexts. Bowman et al. (2015) learns a genera-
tive model over sentences using a variational lower
bound. In reinforcement learning, Wang et al.
(2017) learn a embedding space over trajectories
and policies for robust imitation.

3 Learning Joint Embedding Spaces

In this work, we propose a method that inter-
leaves language feedback with online reinforce-
ment learning to learn policies that align with
human preferences. We augment human prefer-
ences with language feedback annotations to learn
a grounding from language feedback to the agent’s
behavior. We train the agent using human feed-
back in an online reinforcement learning system.
In learning new tasks, the human can provide feed-
back directly in terms of the grounded language
they used during annotation.

Our hypothesis is that while high-level language
descriptions may not generalize well to new com-
plex tasks, language feedback will be valid across
tasks. Moreover, high-level instruction-following
does not take into account incorrect interpretations
of the instruction text while in our method, lan-
guage feedback is conditioned on the agent’s cur-
rent behavior.

For instance consider the block pushing task, if
the robot has no understanding of what a ”blue
block” is, there is no means for the human to pro-
vide a high-level instruction that will complete
the task. However, in our feedback method, if
the robot was initially reaching too far below the
blue block, we could provide language feedback
such as ”reach higher” without without requiring



Figure 2: Joint embedding space model: behav-
iors τ1 and τ2 are encoded as points z1 and z2 in
the space and language feedback f as the vector
v between z1 and z2. Encoders Eτ (τ) and El(f)
map language and behavior as points and vectors
in the space, and decoders Dτ (z) and Dl(v) map
points and vectors from the space back into behav-
ior and language.

the robot to generalize its understand of the ”blue
block.”

To account for language feedback, we learn an
embedding space in which language and behavior
can be encoded together. Since, language feed-
back describes the difference between two behav-
iors, we can think of feedback as the language that
takes you from behavior τ1 to behavior τ2. In
the embedding space, we choose to map behav-
iors as points and language feedback as a vector
between two behavior points. This joint represen-
tation of language and behavior enable us to build
agents that can understand language feedback and
describe changes in behavior using language.

To construct our deep embedding space, we
learn a behavior encoder Eτ (τ) = z that en-
codes a behavior τ as a point z in the embedding
space and language encoder El(f) that encodes
language feedback l as a vector v in the embed-
ding space. To recover behaviors and language,
we also learn a behavior decoder Dτ (z) = τ that
can recover a behavior τ given a point z in the em-
bedding space and a language decoder Dl(v) = f
that can recover language feedback f given a vec-
tor v in the space. Together, these encoders and
decoders enable us to learn a well-structured space
in which language feedback f describing two be-
haviors τ1, τ2 represents the vector between two
behavior points in the embedding space:

Eτ (τ2)− Eτ (τ1) = El(f)

3.1 Model

While our model is agnostic to choices of repre-
sentations for encoder, decoder, language and be-
havior, we will discuss possible choices for such
representations and concrete implementation de-
tails.

First we consider behavior in the context of
a Markov decision process (S,A, T , ρ0) where
S is the set of states, A the set of actions,
T (st+1|st, at) the transition distribution, and ρ0
the initial state distribution. We consider finite T
horizon trajectories with s0 ∼ ρ0, at ∼ πθ(st|at),
st ∼ T (st+1|st, at) where πθ(s|a) is a parame-
terized policy. A trajectory τ := {s0, s1, ..., sT } is
defined as a collection of states sampled according
to the trajectory distribution induced by πθ.

Since a policy πθ induces a trajectory distribu-
tion pθ(τ), we can represent behavior in terms of
the policy πθ or samples from the trajectory dis-
tribution τ ∼ pθ(τ). For the purpose of simplic-
ity, we chose to represent behavior in terms of tra-
jectories. A model that predicts trajectories will
not immediately provide a policy that can realize
such trajectories; however, using imitation learn-
ing techniques we can subsequently learn policies
to imitate predicted trajectories.

To encode trajectories, we parameterize Eτ as a
neural network. For long trajectories of arbitrary
length, a bidirectional LSTM may serve as a good
encoder for such state sequences. However, for the
purpose of simplicity, we chose a fully connected
neural network that encodes fixed-length trajecto-
ries. The input to the network is a flattened trajec-
tory followed by two hidden layers with numbers
of hidden units equal to half and a quarter of the in-
put dimension respectively. We use Leaky-ReLU
nonlinearities with an embedding space dimension
of 32. The decoder Dτ maps 32-dimensional be-
havior points into flattened trajectories with two
hidden layers with numbers of hidden units equal
to a quarter and half of the flattened trajectory di-
mension respectively.

Language feedback can be represented as a se-
quence of word tokens. One encoder and decoder
representation for such a representation could be
a seq-to-seq model where the encoders and de-
coders are recurrent neural networks. To avoid the
complexity of such language models, we choose
to represent feedback as a bag-of-words.

We parameterize the encoder El as a neural net-
work with two hidden layers with numbers of hid-



den units equal to half the input dimension. The
decoder Dl is a neural network with a single 32-
unit hidden layer. The output activation is a soft-
max distribution over mutually exclusive groups
of words.

3.2 Model Training

To train our model, we use several losses to ensure
the embedding space is well structured. Moreover,
we conduct an ablation study in Section 5, and
show that all losses of the model are important in
regularizing the model for generalization.

To ensure that language vectors in the embed-
ding space correspond to differences in behavior
points, we use an alignment loss:

Lalign = ||El(f)− (Eτ (τ2)− Eτ (τ1))||22

This loss ensures that the encoded language vector
El(f) is close to the difference in behavior points
Eτ (τ2)− Eτ (τ1) in squared Euclidean distance.

To ensure that predicted trajectories are consis-
tent with the language feedback, we use a predic-
tion loss:

Lpred = ||Dτ (Eτ (τ1) + El(f))− τ2||22

Here, the predicted trajectory of τ1 after taking
into account the feedback f , should be close to the
ground truth trajectory τ2.

For the language decoder to produce reasonable
descriptions, we use a description loss:

Ldesc = CE(f,Dl(Eτ (τ2)− Eτ (τ1)))

Where CE is the cross entropy. This ensures that
vectors between two behavior points decode to the
correct ground truth language feedback.

We also regularize the trajectory encoder and
decoder with the autoencoding loss:

Lτ = ||Dτ (Eτ (τ))− τ ||22

This ensures that the encoder and decoder are pro-
ducing consistent predictions.

For training, we optimize the total loss:

L =
∑
τ1,τ2,f

(Lalign + λ1(Lpred + Lτ ) + λ2Ldesc)

Where λ1 and λ2 are hyperparameters. We train
the model end-to-end using the ADAM optimizer
with learning rate 10−4.

3.3 Learning with Language Feedback

Now we will consider three applications of our
model: controlling the behavior of an agent using
language feedback, extrapolation in the embed-
ding space, and language descriptions of changes
in behavior.

With a joint embedding space model, it is
straightforward to adjust agent behavior using lan-
guage. Suppose the agent currently exhibits be-
havior τ0, and a human provides language feed-
back f to the agent. The model can encode the
agent’s behavior as a point z0 = Eτ (τ0), encode
the language feedback as a vector v = El(f),
and add z0 and v to recover a new behavior point
z1 = z0+v. In the embedding space, z1 represents
the behavior τ0 after accounting for language feed-
back. To recover the adjusted behavior, we can
decode z1 to behavior τ1 = Dτ (z1) that the agent
can follow.

Certain language instructions can also be ap-
plied repeatedly. Consider, for instance, the feed-
back instruction, ”move right.” If we want to
tell the agent to move very far to the right, this
amounts to telling the agent to ”move right” sev-
eral times. We can exploit the consistency in
the embedding to achieve this. First, encode the
agent’s behavior as a point z0 = Eτ (τ0), encode
the language feedback as a vector v = El(f).
Since the feedback vector is constant for a given
language instruction, we can apply it several times
until the desired behavior is achieved. Namely, we
can consider z1 = z0 + λv for λ ∈ N. For well
structured spaces, we can even consider λ ∈ R
where λ < 0 could produce behavior opposite of
the language feedback.

Explaining changes in agent behavior is impor-
tant in building models and optimization methods
that are interpretable. Using a joint embedding
space model, we can use the language decoder
Dl to recover descriptions of changes in behav-
ior. Suppose we have to behaviors τ1 and τ2 with
encodings z1 = Eτ (τ1) and z2 = Eτ (τ2). Since
vectors in the embedding space represent language
feedback, we can decode the vector between z1
and z2 to recover a description of the changes in
behavior Dl(z2 − z1).

4 Experiments

To evaluate the effectiveness of our method, we
set up two experiments in simulation: 2D naviga-
tion and 2-DoF arm manipulation. In designing



Figure 3: Qualitative and quantitative evaluation of behavior prediction on the 2D navigation task. For
random behavior pairs τ1 and τ2 with language feedback f in the validation set, we show the predicted
Dτ (Eτ (τ1) + El(f)) trajectory under our model as well as the MSE (Lpred).

our experiments, we sought to address the follow-
ing questions:

1. Can we adjust behaviors to language feed-
back using the learned embedding space?

2. Does extrapolation in the embedding space
produce meaningful results?

3. Can the model offer reasonable explanations
for differences in behaviors?

In the 2D navigation environment, the agent can
move in the 4 cardinal directions and the state
space is the position of the agent. We recorded
trajectories of the agent moving to random target
locations and randomly sampled two trajectories
to describe the feedback that would take one tra-
jectory to the other. While we had set up a manual
annotation framework, it was more efficient to ex-
periment with automatically annotated data for the
purpose of our experiments. The feedback was la-
belled according differences in the final agent po-
sition, discretized to 60 bins along the x and y di-
rections.

In the 2-DoF reaching environment, the robot
is torque-controlled and trained to reach different
locations on the plane. We recorded trajectories

of the robot reaching to random target locations
and collected pairs of trajectories that differed by
a fixed amount along 8 directions spread uniform
on the plane. The feedback was recorded as differ-
ence in the final end-effector position of the robot
discretized to 3 bins along the x and y directions.

We collected 1000 pairs of trajectories and la-
bels, and trained our model on 750 pairs with 250
pairs in the validation set.

4.1 Learning to Adjust Behavior
To evaluate our model’s effectiveness in adjusting
behavior according to language feedback, we eval-
uated our model’s predictions on the validation set
and generalization on examples outside the train-
ing set.

On the validation set, our model predicted trans-
lated trajectories with a mean squared error of
0.00376. Figure 3 compares this quantitative eval-
uation with a qualitative evaluation. Moreover, the
model was able to generalize and predict behavior
that wasn’t seen in the training set as shown in Fig-
ure 5.

4.2 Extrapolation in the Space
For the 2-DoF reaching task, we found that our
model could also adjust behavior in accordance to



Figure 4: Qualitative and quantitative evaluation of behavior description on the 2D navigation task. For
random behavior pairs τ1 and τ2 with language feedback f in the validation set, we show the predicted
language description Dl(Eτ (τ2) − Eτ (τ1)) under our model, plot of the true one-hot word distribution
vs the predicted distribution, and the average cross entropy between the true and predicted distributions
(Ldesc).

Figure 5: Generalization of our model on 2D nav-
igation task. The model can incorporate language
feedback that generalizes to states unseen in the
training data.

language feedback. Since an encoding of a feed-
back text El(f) is valid for any region of the em-
bedding space, we can extrapolate in the direction
of the feedback to get more extreme behavior.

We found that we can start with a behavior that
reached to the left half of the plane and encode this
behavior to a point z1. Then, by adding multiples
of the language feedback ”move right,” z1 = z0 +
λEl(“Move Right”), the reacher will slowly reach
towards the right with increasing λ (Figure 6).

Figure 6: Extrapolation of behavior on the 2-DoF
reaching task. We plot the final reaching location
of the arm. We start with a reaching behavior that
reaches towards the left-half of the plane and as we
add multiples of the encoded ”move right” feed-
back, the arm begins to reach towards the right-
half of the plane.

4.3 Describing changes in behavior

To evaluate our model’s effectiveness in predicting
language descriptions, we evaluate the language
decoder on the 2D navigation task. For pairs of
behaviors (τ1, τ2) in the validation set, we encode
those behaviors into points z1 and z2 respectively.
Then we decode the difference of those points us-



Ablation Best MSE CE MSE Best CE
Full model 0.00376 1.15 0.00391 1.15
Without Lτ 0.00450 1.28 0.00485 1.23
Without Lpred 0.00475 1.28 0.00494 1.27
Without Lalign 0.00796 3.84 0.00976 3.11
Without Ldesc 0.0102 4.09 0.779 4.09
Only Ldesc 1.62 4.09 1.63 3.22

Table 1: Table of ablation study results. For each ablation we evaluate the MSE of trajectory decoder
(Lpred) as well as the cross entropy of the language description (Ldesc). We evalute these metrics on the
validation set and show the best MSE throughout the training along with the CE at that iteration as well
as the best CE and corresponding MSE at that iteration.

ing the language decoder Dl(z2 − z1).
On the validation set, our model achieves a

cross entropy of 1.15. Figure 4 compares this
quantitative evaluation with a qualitative evalua-
tion.

5 Ablation Study

To evaluate the effectiveness of our various losses,
we conduct an ablation study on our model for the
2D navigation environment. As shown in Table 1,
our complete model offers the best generalization
on data in the validation set. It is interesting to
note that removing the description loss Ldesc re-
sults in worse generalization of the trajectory pre-
dictor as indicated by the MSE. This leads us to
believe that learning a embedding space in which
it is easier to infer language instructions between
behavior points leads to a better structured, more
generalizable space.

6 Discussion and Future Work

We proposed a model that learns a joint embed-
ding space for behavior and language. We showed
how the model can enable agents to adjust to hu-
man feedback and describe changes in behavior.
It remains to scale this method to more complex
tasks and language. Moreover, it would be excit-
ing to see how a model trained using this method
can be used to solve real world tasks using lan-
guage feedback and offer explanations that shed
light to often blackbox optimization methods.

7 Collaboration

This research project is a joint collaboration with
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2012. APRIL: Active Preference Learning-Based
Reinforcement Learning, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pages 116–131.

Riad Akrour, Marc Schoenauer, Michèle Sebag, and
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