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Abstract
In the absence of dense reward signals, reinforce-
ment learning algorithms often struggle to learn.
Methods such as count-based exploration or in-
formation maximization attempt to alleviate this
problem by incentivizing exploration in novel re-
gions of the state space. In this project, we
propose to explore an unsupervised method that
learns to explore the state space in the absence of
a known reward function.

1. Introduction
Deep reinforcement learning algorithms have shown a re-
markable ability in learning complex control policies from
high-dimensional visual input. However, much of the suc-
cess of these methods have been in domains where rewards
provide dense feedback in terms of which actions were op-
timal. In sparse-reward tasks, where no reward signal may
be given for most states, naive exploration strategies such
as ε-greedy or randomly initialized policies will struggle to
learn.

In an attempt to address the sparse-reward problem, many
prior methods use intrinsic motivation to encourage explo-
ration. Houthooft et al. (2016) maximize information gain
on a model of the environment dynamics to encourage ex-
ploration in regions of the state space the model cannot pre-
dict well. Tang et al. (2016) use hashing in a count-based
exploration bonus. Bellemare et al. (2016) approximate
count-based exploration with an explicit density model,
while Fu et al. (2017) extend count-based exploration to
implicit density models.

2. Method
Consider a Markov decision process (S,A, T , ρ0) where S
is the set of states, A the set of actions, T (st+1|st, at) the
transition distribution, and ρ0 the initial state distribution.
We consider finite T horizon trajectories with s0 ∼ ρ0,
at ∼ πθ(st|at), st ∼ T (st+1|st, at) where πθ(s|a) is a
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parameterized policy. A trajectory τ := {s0, a0, s1, a1...}
is defined as a collection of states and actions sampled ac-
cording to the trajectory distribution induced by πθ.

Without a priori knowledge of a reward, an agent should
have mastery of the states it can reach. Thus to account for
sparse rewards that can be located in any region of the state
space, we optimize πθ to maximize entropy over reachable
states at time T :

max
θ
H(sT ) (1)

We optimize θ using reinforcement learning with reward
R(sT ) = − log p(sT ) where p(sT ) is the probability the
final state is sT under the policy θ. We approximate p(sT )
using a density model pψ(sT ) with parameters ψ. We use
a trust region policy optimization method (Schulman et al.,
2015) to bound the policy changes across iterations so the
final state distribution p(sT ) does not change significantly
across iterations. A maximum entropy policy such as this
will serve as a good initialization for sparse reward prob-
lems when the reward function is not known beforehand.

While a maximum entropy policy will learn to explore the
state space, it may be slow to adapt such a policy to new
tasks. It may take several gradient updates to reduce the
entropy of the policy and shift the trajectory distribution
to regions of the state space relevant to a given task. To
address this issue, we introduce a latent variable Z, which
controls the state distribution of the policy. Namely, we
consider the optimization:

max
θ,Z

I(sT ;Z) (2)

Note that the objective can decomposed into a sum of the
maximum entropy term and an conditional entropy term:

I(sT ;Z) = H(sT )−H(sT |Z) (3)

This objective still maintains that the policy should learn
to explore the state space uniformly, however given a la-
tent variable Z, the policy should consistently visit a single
region of the state space.
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Algorithm 1 Maximum Entropy Exploration
for iterations = 1 to N do

Sample trajectories {τ1, τ2, ..., τn} using πθ
Policy gradient step θ ← θ + α∇Eτ [− logPφ(sT )]
Update density model φ← φ+ α∇Eτ [logPφ(sT )]

end for

3. Experiments
In designing our experiments, we sought to address the fol-
lowing questions:

1. Does maximum entropy exploration learn policies that
effectively explore the reachable state space?

2. Can we learn policies that are easily controllable with
a latent variable Z?

3. How does the method scale to complex continuous
state and action spaces?

3.1. 2D Block Manipulation

To evaluate the ability of our method to discover manipu-
lation skills, we set up a 2D block manipulation environ-
ment. The agent, a 2D navigator, can pick up, move, and
place different blocks within a bounding box. We used the
Maximum Entropy Exploration Algorithm [1] with πθ pa-
rameterized as a neural network and Pφ as a count-based
estimator over a finite history.

The results of our experiments show that the maximum en-
tropy exploration method was able to move multiple blocks
to various places around the box, without an external re-
ward signal that rewarded block moving. The distribution
of final block positions is also fairly distributed across the
state space as show in Figure 1.

Figure 1. Left four plots: plot of final state distribution of the
agent (purple) and three other blocks (magenta, green, black) us-
ing a randomly initialized policy. Right four plots: plot of final
state distribution of the agent (purple) and three other blocks (ma-
genta, green, black) using the policy trained with Maximum En-
tropy Exploration. The exploration policy learned to pick up and
move blocks in the absence of an external reward.

Algorithm 2 Maximum Controllability
for iterations = 1 to N do

Sample trajectories {τ1, τ2, ..., τn} using πθ
Policy gradient step

θ ← θ + α∇Eτ [− logPφ(sT ) + logPψ(sT |Z)]
Update density model

φ← φ+ α∇Eτ [logPφ(sT )]
ψ ← ψ + α∇Eτ [logPψ(sT |Z)]

end for

Figure 2. Each subplot shows the agent trajectory samples for
given Z. The controllable policy consistently reaches a small re-
gion of the state space conditioned on Z.

3.2. Controllable Navigation

To evaluate the Maximum Controllability Algorithm [2],
we ran the algorithm on the 2D manipulation environment.
We used a fixed discrete, uniform distribution Z, with dis-
tributions Pφ and Pψ as finite-history, count-based density
estimators. πθ is parameterized as a neural network. We
found that, conditioned on a latent variable Z, the policy
consistently visited a small region of the state space as
show in Figure 2. The policy also covered a wide range
of the state space over all possible Z.

3.3. Exploration Continuous Environments

In evaluating the ability of our method to scale to complex,
continuous-control environments, we applied the Maxi-
mum Entropy Exploration Algorithm to the swimmer en-
vironment. The swimmer is a torque-controlled, 3-link
robot with continuous actions and states that navigates on
a plane.

To estimate continuous density, we parameterize Pφ as a
variational autoencoder and πθ as a neural network. We
found that the swimmer learned to swim to a wide distribu-
tion of locations on the plane as shown in Figure 3.
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Figure 3. Left: distribution of final center-of-mass (COM) for
swimmer with a randomly initialized policy. Right: distribution
of final center-of-mass for swimmer a policy trained using Maxi-
mum Entropy Exploration. Notice the wider, more evenly spread
distribution using the exploration policy.
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